Grand Standardized Solution
grand_standardized_solution.Rd
Grand standardized solution of a two-stage path analysis model.
Usage
grand_standardized_solution(
object,
model_list = NULL,
se = TRUE,
acov_par = NULL,
free_list = NULL,
level = 0.95
)
grandStandardizedSolution(
object,
model_list = NULL,
se = TRUE,
acov_par = NULL,
free_list = NULL,
level = 0.95
)
Arguments
- object
An object of class lavaan.
- model_list
A list of string variable describing the structural path model, in
lavaan
syntax.- se
A Boolean variable. If TRUE, standard errors for the grand standardized parameters will be computed.
- acov_par
An asymptotic variance-covariance matrix for a fitted model object.
- free_list
A list of model matrices that indicate the position of the free parameters in the parameter vector.
- level
The confidence level required.
Examples
library(lavaan)
## A single-group, two-factor example
mod1 <- '
# latent variables
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
# regressions
dem60 ~ ind60
'
fit1 <- sem(model = mod1,
data = PoliticalDemocracy)
grand_standardized_solution(fit1)
#> The grand standardized solution is equivalent to lavaan::standardizedSolution() for a model with a single group.
#> lhs op rhs exo group block label est.std se z pvalue ci.lower
#> 8 dem60 ~ ind60 0 1 1 0.46 0.1 4.593 0 0.264
#> ci.upper
#> 8 0.657
## A single-group, three-factor example
mod2 <- '
# latent variables
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
'
fit2 <- sem(model = mod2,
data = PoliticalDemocracy)
grand_standardized_solution(fit2)
#> The grand standardized solution is equivalent to lavaan::standardizedSolution() for a model with a single group.
#> lhs op rhs exo group block label est.std se z pvalue ci.lower
#> 12 dem60 ~ ind60 0 1 1 0.448 0.102 4.393 0.000 0.248
#> 13 dem65 ~ ind60 0 1 1 0.146 0.070 2.071 0.038 0.008
#> 14 dem65 ~ dem60 0 1 1 0.913 0.048 19.120 0.000 0.819
#> ci.upper
#> 12 0.648
#> 13 0.283
#> 14 1.006
## A multigroup, two-factor example
mod3 <- '
# latent variable definitions
visual =~ x1 + x2 + x3
speed =~ x7 + x8 + x9
# regressions
visual ~ c(b1, b1) * speed
'
fit3 <- sem(mod3, data = HolzingerSwineford1939,
group = "school",
group.equal = c("loadings", "intercepts"))
grand_standardized_solution(fit3)
#> lhs op rhs exo group block label est.std se z pvalue ci.lower
#> 7 visual ~ speed 0 1 1 b1 0.431 0.073 5.867 0 0.287
#> 30 visual ~ speed 0 2 2 b1 0.431 0.073 5.867 0 0.287
#> ci.upper
#> 7 0.575
#> 30 0.575
## A multigroup, three-factor example
mod4 <- '
# latent variable definitions
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
# regressions
visual ~ c(b1, b1) * textual + c(b2, b2) * speed
'
fit4 <- sem(mod4, data = HolzingerSwineford1939,
group = "school",
group.equal = c("loadings", "intercepts"))
grand_standardized_solution(fit4)
#> lhs op rhs exo group block label est.std se z pvalue ci.lower
#> 10 visual ~ textual 0 1 1 b1 0.419 0.073 5.704 0 0.275
#> 11 visual ~ speed 0 1 1 b2 0.324 0.078 4.145 0 0.171
#> 46 visual ~ textual 0 2 2 b1 0.419 0.073 5.704 0 0.275
#> 47 visual ~ speed 0 2 2 b2 0.324 0.078 4.145 0 0.171
#> ci.upper
#> 10 0.563
#> 11 0.477
#> 46 0.563
#> 47 0.477