Diagnostic plots of fitted 2S-PA model
tspa_plot.Rd
Diagnostic plots of fitted 2S-PA model
Usage
tspa_plot(
tspa_fit,
title = NULL,
label_x = NULL,
label_y = NULL,
abbreviation = TRUE,
fscores_type = c("original", "lavaan"),
ask = FALSE,
...
)
Arguments
- tspa_fit
An object of class lavaan, representing the output generated from the
tspa()
function.- title
Character. Set the name of scatter plot. The default value is "Scatterplot".
- label_x
Character. Set the name of the x-axis. The default value is "fs_" followed by variable names.
- label_y
Character. Set the name of the y-axis. The default value is "fs_" followed by variable names.
- abbreviation
Logic input. If
FALSE
is indicated, the group name will be shown in full. The default setting isTRUE
.- fscores_type
Character. Set the type of factor score for input. The default setting is using factor score from observed data (i.e., output from
get_fs()
). Iffscore_type = "est"
, then it will use output fromlavaan::lavPredict()
.- ask
Logic input. If
TRUE
is indicated, the user will be asked before before each plot is generated. The default setting is 'False'.- ...
Examples
library(lavaan)
model <- "
# latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
# regressions
dem60 ~ ind60
"
fs_dat_ind60 <- get_fs(
data = PoliticalDemocracy,
model = "ind60 =~ x1 + x2 + x3"
)
fs_dat_dem60 <- get_fs(
data = PoliticalDemocracy,
model = "dem60 =~ y1 + y2 + y3 + y4"
)
fs_dat <- cbind(fs_dat_ind60, fs_dat_dem60)
tspa_fit <- tspa(
model = "dem60 ~ ind60",
data = fs_dat,
se_fs = list(ind60 = 0.1213615, dem60 = 0.6756472)
)
tspa_plot(tspa_fit)